Skip to main content
Version: 0.6.11

Starwhale Data Types

COCOObjectAnnotation​

It provides definitions following the COCO format.

COCOObjectAnnotation(
id: int,
image_id: int,
category_id: int,
segmentation: Union[t.List, t.Dict],
area: Union[float, int],
bbox: Union[BoundingBox, t.List[float]],
iscrowd: int,
)
ParameterDescription
idObject id, usually a globally incrementing id
image_idImage id, usually id of the image
category_idCategory id, usually id of the class in object detection
segmentationObject contour representation, Polygon (polygon vertices) or RLE format
areaObject area
bboxRepresents bounding box, can be BoundingBox type or list of floats
iscrowd0 indicates a single object, 1 indicates two unseparated objects

Examples​

def _make_coco_annotations(
self, mask_fpath: Path, image_id: int
) -> t.List[COCOObjectAnnotation]:
mask_img = PILImage.open(str(mask_fpath))

mask = np.array(mask_img)
object_ids = np.unique(mask)[1:]
binary_mask = mask == object_ids[:, None, None]
# TODO: tune permute without pytorch
binary_mask_tensor = torch.as_tensor(binary_mask, dtype=torch.uint8)
binary_mask_tensor = (
binary_mask_tensor.permute(0, 2, 1).contiguous().permute(0, 2, 1)
)

coco_annotations = []
for i in range(0, len(object_ids)):
_pos = np.where(binary_mask[i])
_xmin, _ymin = float(np.min(_pos[1])), float(np.min(_pos[0]))
_xmax, _ymax = float(np.max(_pos[1])), float(np.max(_pos[0]))
_bbox = BoundingBox(
x=_xmin, y=_ymin, width=_xmax - _xmin, height=_ymax - _ymin
)

rle: t.Dict = coco_mask.encode(binary_mask_tensor[i].numpy()) # type: ignore
rle["counts"] = rle["counts"].decode("utf-8")

coco_annotations.append(
COCOObjectAnnotation(
id=self.object_id,
image_id=image_id,
category_id=1, # PennFudan Dataset only has one class-PASPersonStanding
segmentation=rle,
area=_bbox.width * _bbox.height,
bbox=_bbox,
iscrowd=0, # suppose all instances are not crowd
)
)
self.object_id += 1

return coco_annotations

GrayscaleImage​

GrayscaleImage provides a grayscale image type. It is a special case of the Image type, for example the digit images in MNIST.

GrayscaleImage(
fp: _TArtifactFP = "",
display_name: str = "",
shape: Optional[_TShape] = None,
as_mask: bool = False,
mask_uri: str = "",
)
ParameterDescription
fpImage path, IO object, or file content bytes
display_nameDisplay name shown in Dataset Viewer
shapeImage width and height, default channel is 1
as_maskWhether used as a mask image
mask_uriURI of the original image for the mask

Examples​

for i in range(0, min(data_number, label_number)):
_data = data_file.read(image_size)
_label = struct.unpack(">B", label_file.read(1))[0]
yield GrayscaleImage(
_data,
display_name=f"{i}",
shape=(height, width, 1),
), {"label": _label}

GrayscaleImage Functions​

GrayscaleImage.to_types​

to_bytes(encoding: str= "utf-8") -> bytes

GrayscaleImage.carry_raw_data​

carry_raw_data() -> GrayscaleImage

GrayscaleImage.astype​

astype() -> Dict[str, t.Any]

BoundingBox​

BoundingBox provides a bounding box type, currently in LTWH format:

  • left_x: x-coordinate of left edge
  • top_y: y-coordinate of top edge
  • width: width of bounding box
  • height: height of bounding box

So it represents the bounding box using the coordinates of its left, top, width and height. This is a common format for specifying bounding boxes in computer vision tasks.

BoundingBox(
x: float,
y: float,
width: float,
height: float
)
ParameterDescription
xx-coordinate of left edge (left_x)
yy-coordinate of top edge (top_y)
widthWidth of bounding box
heightHeight of bounding box

ClassLabel​

Describe labels.

ClassLabel(
names: List[Union[int, float, str]]
)

Image​

Image Type.

Image(
fp: _TArtifactFP = "",
display_name: str = "",
shape: Optional[_TShape] = None,
mime_type: Optional[MIMEType] = None,
as_mask: bool = False,
mask_uri: str = "",
)
ParameterDescription
fpImage path, IO object, or file content bytes
display_nameDisplay name shown in Dataset Viewer
shapeImage width, height and channels
mime_typeMIMEType supported types
as_maskWhether used as a mask image
mask_uriURI of the original image for the mask

The main difference from GrayscaleImage is that Image supports multi-channel RGB images by specifying shape as (W, H, C).

Examples​

import io
import typing as t
import pickle
from PIL import Image as PILImage
from starwhale import Image, MIMEType

def _iter_item(paths: t.List[Path]) -> t.Generator[t.Tuple[t.Any, t.Dict], None, None]:
for path in paths:
with path.open("rb") as f:
content = pickle.load(f, encoding="bytes")
for data, label, filename in zip(
content[b"data"], content[b"labels"], content[b"filenames"]
):
annotations = {
"label": label,
"label_display_name": dataset_meta["label_names"][label],
}

image_array = data.reshape(3, 32, 32).transpose(1, 2, 0)
image_bytes = io.BytesIO()
PILImage.fromarray(image_array).save(image_bytes, format="PNG")

yield Image(
fp=image_bytes.getvalue(),
display_name=filename.decode(),
shape=image_array.shape,
mime_type=MIMEType.PNG,
), annotations

Image Functions​

Image.to_types​

to_bytes(encoding: str= "utf-8") -> bytes

Image.carry_raw_data​

carry_raw_data() -> GrayscaleImage

Image.astype​

astype() -> Dict[str, t.Any]

Video​

Video type.

Video(
fp: _TArtifactFP = "",
display_name: str = "",
mime_type: Optional[MIMEType] = None,
)
ParameterDescription
fpVideo path, IO object, or file content bytes
display_nameDisplay name shown in Dataset Viewer
mime_typeMIMEType supported types

Examples​

import typing as t
from pathlib import Path

from starwhale import Video, MIMEType

root_dir = Path(__file__).parent.parent
dataset_dir = root_dir / "data" / "UCF-101"
test_ds_path = [root_dir / "data" / "test_list.txt"]

def iter_ucf_item() -> t.Generator:
for path in test_ds_path:
with path.open() as f:
for line in f.readlines():
_, label, video_sub_path = line.split()

data_path = dataset_dir / video_sub_path
data = Video(
data_path,
display_name=video_sub_path,
shape=(1,),
mime_type=MIMEType.WEBM,
)

yield f"{label}_{video_sub_path}", {
"video": data,
"label": label,
}

Audio​

Audio type.

Audio(
fp: _TArtifactFP = "",
display_name: str = "",
mime_type: Optional[MIMEType] = None,
)
ParameterDescription
fpAudio path, IO object, or file content bytes
display_nameDisplay name shown in Dataset Viewer
mime_typeMIMEType supported types

Examples​

import typing as t
from starwhale import Audio

def iter_item() -> t.Generator[t.Tuple[t.Any, t.Any], None, None]:
for path in validation_ds_paths:
with path.open() as f:
for item in f.readlines():
item = item.strip()
if not item:
continue

data_path = dataset_dir / item
data = Audio(
data_path, display_name=item, shape=(1,), mime_type=MIMEType.WAV
)

speaker_id, utterance_num = data_path.stem.split("_nohash_")
annotations = {
"label": data_path.parent.name,
"speaker_id": speaker_id,
"utterance_num": int(utterance_num),
}
yield data, annotations

Audio Functions​

Audio.to_types​

to_bytes(encoding: str= "utf-8") -> bytes

Audio.carry_raw_data​

carry_raw_data() -> Audio

Audio.astype​

astype() -> Dict[str, t.Any]

Text​

Text type, the default encode type is utf-8.

Text(
content: str,
encoding: str = "utf-8",
)
ParameterDescription
contentThe text content
encodingEncoding format of the text

Examples​

import typing as t
from pathlib import Path
from starwhale import Text

def iter_item(self) -> t.Generator[t.Tuple[t.Any, t.Any], None, None]:
root_dir = Path(__file__).parent.parent / "data"

with (root_dir / "fra-test.txt").open("r") as f:
for line in f.readlines():
line = line.strip()
if not line or line.startswith("CC-BY"):
continue

_data, _label, *_ = line.split("\t")
data = Text(_data, encoding="utf-8")
annotations = {"label": _label}
yield data, annotations

Text Functions​

to_types​

to_bytes(encoding: str= "utf-8") -> bytes

Text.carry_raw_data​

carry_raw_data() -> Text

Text.astype​

astype() -> Dict[str, t.Any]

Text.to_str​

to_str() -> str

Binary​

Binary provides a binary data type, stored as bytes.

Binary(
fp: _TArtifactFP = "",
mime_type: MIMEType = MIMEType.UNDEFINED,
)
ParameterDescription
fpPath, IO object, or file content bytes
mime_typeMIMEType supported types

Binary Functions​

Binary.to_types​

to_bytes(encoding: str= "utf-8") -> bytes

Binary.carry_raw_data​

carry_raw_data() -> Binary

Binary.astype​

astype() -> Dict[str, t.Any]

Link provides a link type to create remote-link datasets in Starwhale.

Link(
uri: str,
auth: Optional[LinkAuth] = DefaultS3LinkAuth,
offset: int = 0,
size: int = -1,
data_type: Optional[BaseArtifact] = None,
)
ParameterDescription
uriURI of the original data, currently supports localFS and S3 protocols
authLink auth information
offsetData offset relative to file pointed by uri
sizeData size
data_typeActual data type pointed by the link, currently supports Binary, Image, Text, Audio and Video

Link.astype​

astype() -> Dict[str, t.Any]

MIMEType​

MIMEType describes the multimedia types supported by Starwhale, implemented using Python Enum. It is used in the mime_type attribute of Image, Video etc to enable better Dataset Viewer support.

class MIMEType(Enum):
PNG = "image/png"
JPEG = "image/jpeg"
WEBP = "image/webp"
SVG = "image/svg+xml"
GIF = "image/gif"
APNG = "image/apng"
AVIF = "image/avif"
PPM = "image/x-portable-pixmap"
MP4 = "video/mp4"
AVI = "video/avi"
WEBM = "video/webm"
WAV = "audio/wav"
MP3 = "audio/mp3"
PLAIN = "text/plain"
CSV = "text/csv"
HTML = "text/html"
GRAYSCALE = "x/grayscale"
UNDEFINED = "x/undefined"

Line​

from starwhale import ds, Point, Line

with dataset("collections") as ds:
line_points = [
Point(x=0.0, y=1.0),
Point(x=0.0, y=100.0)
]
ds.append({"line": line_points})
ds.commit()

Point​

from starwhale import ds, Point

with dataset("collections") as ds:
ds.append(Point(x=0.0, y=100.0))
ds.commit()

Polygon​

from starwhale import ds, Point, Polygon

with dataset("collections") as ds:
polygon_points = [
Point(x=0.0, y=1.0),
Point(x=0.0, y=100.0),
Point(x=2.0, y=1.0),
Point(x=2.0, y=100.0),
]
ds.append({"polygon": polygon_points})
ds.commit()